A Novel Dihydroflavone from the Roots of Uvaria Macrophylla

Si WANG, Pei Cheng ZHANG, Ruo Yun CHEN, Ying Hong WANG, Wen Yi HE, De Quan YU*

> Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Abstract: A new dihydroflavone (1), named macrophyllol A, was isolated from the roots of *Uvaria macrophylla*. Its structure was elucidated on the basis of spectroscopic evidence.

Keywords: Uvaria macrophylla, macrophyllol A.

Uvaria macrophylla (Annonaceace) is a tropical plant, widely distributed in Hainan, Guangdong and Guangxi provinces of southern China¹. In the course of our ongoing screening for anticancer agents from Annonaceous plants, an ethanolic extract of the roots of the titled plant was found to possess strong cytotoxic activities against a number of human cancer cell lines. Purification of this extract yielded a new dihydroflavone, named macrophyllol A (1), together with nineteen known compounds including two dihydroflavones, three acetogenins, six polyoxygenated cyclohexens and eight alkaloids²⁻⁴. In this paper, we report the structure elucidation of the new compound by spectroscopic analysis.

Macrophyllol A (1) was isolated as yellow powder, mp 124 -127°C, $[\alpha]_{D}^{23}$ -67 (c 0.14, MeOH). Its molecular formula was determined as $C_{25}H_{24}O_7$ by HREIMS, m/z 436.1501 [M]⁺ (calcd. 436.1522). The IR spectrum (KBr, cm⁻¹) displayed absorption bands for hydroxyl (3467), carbonyl (1647) and aromatic moiety (1620 and 1500). Its UV spectrum exhibited characteristic absorptions for dihydroflavone [λ_{max} (loge): 285

^{*}E-mail: dqyu@imm.ac.cn

Si WANG et al.

(4.56) and 204 (4.92) nm]. The ¹H NMR spectrum of **1** showed the presence of a phenolic hydroxyl at δ 12.33 (s) ascribed to 5-OH, the signals at δ 7.38-7.68 (m, 5H) were assigned to the protons of ring B, the signals at δ 5.74 (dd, 1H, J = 13.5, 3.0 Hz), 3.31 (dd, 1H, J = 17.6, 13.5 Hz) and 2.96 (dd, 1H, J = 17.6, 3.0 Hz) consisting of ABX system to H-2, H-3 α and H-3 β , and the signals of another simplified ABX system at δ 6.48 (d, 1H, J = 2.7 Hz), 6.61 (dd, 1H, J = 8.4, 2.7 Hz) and 6.78(d, 1H, J = 8.4Hz) to the protons of ring D. The ¹³C and DEPT NMR spectra revealed 25 carbon signals including three primary, two secondary, nine tertiary and eleven quarternary carbons. Observation of the HMBC correlations of the protons at δ 3.91 (s, 2H) with the carbons at δ 160.9, 157.8, 149.8, 128.8, 115.7 and 114.3 suggested that a benzyl was linked to C-6 position, similarly the two methoxyl at δ 3.83(s, 3H) and 3.98(s, 3H) were determined to be located at C-7 and C-8 position respectively. In the NOESY spectrum, the aromatic proton at δ 6.48 (d, 1H, J = 2.7Hz) was correlated to the protons at δ 3.66 (s, 3H) and 3.91 (s, 2H) indicating that the methoxyl residue was substituted to C-16 position. The left hydroxyl should be attached to C-13 position according to its formula.

Position	$\delta_{\rm H} J$ (Hz)	$\delta_{\rm C}$	Position	$\delta_{\rm H} J$ (Hz)	$\delta_{\rm C}$
2	5.74 dd (13.5, 3.0)	80.1	14	6.78 d (8.4)	115.8
3	2.96 dd (17.6, 3.0)	44.0	15	6.61 dd (8.4, 2.7)	112.6
	3.31 dd (13.5,17.6)		6		154.3
4		198.5	17	6.48 d (2.7)	115.7
5		157.8	1'		140.1
6		114.3	2'	7.68 m	128.5
7		160.9	3'	7.52 m	130.5
8		134.8	4'	7.41 m	130.5
9		155.2	5'	7.52 m	130.5
10		105.6	6'	7.68 m	128.5
11	3.91s	24.2	7-OCH ₃	3.98 s	61.7
12		128.8	8-OCH ₃	3.83 s	61.5
13		149.8	16-OCH ₃	3.66 s	55.8

Table 1. ¹H (500MHz) and ¹³C (125MHz) NMR data of 1 in CD₃COCD₃

References

- Editing Board of Flora of People's Republic of China, Chinese Academy of Sciences, *Flora of Reipublicae Popularis Sinicae* (in Chinese), Science Press, **1979**, *30* (2), 22.
- 2. H. L. Zhang, R. Y. Chen, Chin. Chem. Lett., 2001, 12 (9), 791.
- 3. H. N. Sohly, W. L. Lasswell, D. Hufford, J. Nat. Prod., 1979, 42, 264.
- 4. G. X. Zhou, L. E. Zhou, R. Y. Chen, D. Q. Yu, J. Nat. Prod., 1999, 62, 261.

Received 22 November, 2001